Spectral kinetics of glutamate-1-semialdehyde aminomutase of Synechococcus.

نویسندگان

  • M A Smith
  • B Grimm
  • C G Kannangara
  • D von Wettstein
چکیده

Purified Synechococcus glutamate-1-semialdehyde aminotransferase (GSA-AT; EC 5.4.3.8) has absorption maxima characteristic of vitamin B6-containing enzymes and can be converted to the pyridoxamine 5'-phosphate or pyridoxal 5'-phosphate form by reaction with diaminovalerate or dioxovalerate, respectively, suggesting that these two analogues are intermediates in the conversion of glutamate 1-semialdehyde (GSA) to 5-aminolevulinate (ALA). Values for Km and kmax were calculated for GSA, diaminovalerate, ALA, and gabaculine from absorption change rates during conversion of one coenzyme form of GSA-AT to the other, upon addition of one of these compounds. The substrate specificity (kmax/Km) of diaminovalerate is about 3 orders of magnitude larger than that of dioxovalerate, making the latter an unlikely intermediate in the enzymic conversion of GSA to ALA. GSA reacts with both coenzyme forms, whereas ALA only reacts with the pyridoxamine 5'-phosphate form of the enzyme. However, ALA does form a complex with the pyridoxal 5'-phosphate form of GSA-AT and inhibits reactions between gabaculine and GSA-AT. This relatively stable complex (Ki = 8 M) may have significance in enzyme inhibition. Both L and D enantiomers of GSA react with GSA-AT. Spectral changes observed upon addition of DL-GSA are apparently due to reaction with the less reactive D-isomer. L-GSA is converted to ALA prior to major spectral changes induced by the racemic mixture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystal structure of glutamate-1-semialdehyde-2,1-aminomutase from Arabidopsis thaliana

Glutamate-1-semialdehyde-2,1-aminomutase (GSAM) catalyzes the isomerization of glutamate-1-semialdehyde (GSA) to 5-aminolevulinate (ALA) and is distributed in archaea, most bacteria and plants. Although structures of GSAM from archaea and bacteria have been resolved, a GSAM structure from a higher plant is not available, preventing further structure-function analysis. Here, the structure of GSA...

متن کامل

Reactions of glutamate semialdehyde aminotransferase (glutamate-1-semialdehyde 2,1 aminomutase) with vinyl and acetylenic substrate analogues analysed by rapid scanning spectrophotometry.

The reactions occurring when glutamate-1-semialdehyde amino-transferase (glutamate-1-semialdehyde 2,1 aminomutase, EC 5.4.3.8) was treated with two potential mechanism-based inactivators, namely 4-aminohex-5-enoate and 4-aminohex-5-ynoate, have been investigated by monitoring rapid transient changes in the absorption spectrum of the enzyme's prosthetic group, pyridoxal 5'-phosphate. In both cas...

متن کامل

Intersubunit signaling in glutamate-1-semialdehyde-aminomutase.

Enzymes are highly dynamic and tightly controlled systems. However, allosteric communication linked to catalytic turnover is poorly understood. We have performed an integrated approach to trap several catalytic intermediates in the alpha2-dimeric key enzyme of chlorophyll biosynthesis, glutamate-1-semialdehyde aminomutase. Our data reveal an active-site "gating loop," which undergoes a dramatic...

متن کامل

Asymmetry of the Active Site Loop Conformation between Subunits of Glutamate-1-semialdehyde Aminomutase in Solution

Glutamate-1-semialdehyde aminomutase (GSAM) is a dimeric, pyridoxal 5'-phosphate (PLP)- dependent enzyme catalysing in plants and some bacteria the isomerization of L-glutamate-1-semialdehyde to 5-aminolevulinate, a common precursor of chlorophyll, haem, coenzyme B12, and other tetrapyrrolic compounds. During the catalytic cycle, the coenzyme undergoes conversion from pyridoxamine 5'-phosphate ...

متن کامل

Structure and function of glutamyl-tRNA reductase involved in 5-aminolaevulinic acid formation.

In most bacteria, in archaea and in plants, the general precursor of all tetrapyrroles, 5-aminolaevulinic acid, is formed by two enzymes. The initial substrate, glutamyl-tRNA, is reduced by NADPH-dependent glutamyl-tRNA reductase to form glutamate 1-semialdehyde. The aldehyde is subsequently transaminated by glutamate-1-semialdehyde 2,1-aminomutase to yield 5-aminolaevulinic acid. The enzymic m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 88 21  شماره 

صفحات  -

تاریخ انتشار 1991